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Learning by explaining examples to oneself: A
computational Model*

Ikurt VanLehn and Randolph M. Jones
Learning Research and Development (‘enter
University of Pittshurgh

Abstract

Several mvestigations have found that students learn more when they explain
examples to themselves while studying them. Moreover. they refer less often to
the examples while solving problems. and they read less of the example each
time they refer to it. These findings. collectively called the self-explanation
effect, have heen reproduced by our cognitive simulation program. Cascade.
Moreover, when (‘ascade is forced to explain exactly the parts of the examples
that a subject explains. then it predicts most (60 to 90%) of the behavior
that the subject exhibits during subsequent problem solving. Cascade has two
kinds of learning. It learns new rules of physics (the task domain used in the
human data modeled) by resolving impasses with reasoning bhased on overly-
general. non-domain knowledge. It acquires procedural competence by storing
its derivations of problem solutions and using them as analogs to guide its search
for solutions to novel problems.

THE TWO MAJOR OBJECTIVES OF THE
CASCADE PROJECT

As Tom Dietterich pointed out in the kevuote address of the 1990
Machine Learning (‘onference. one of the biggest challenges in machine
learning is to get machines to learn from ordinary instructional material.
such as that used to train scientists, engineers and technicians. Not

*This research was supported bv the Cognitive Science division of the Office of
Naval Research under contract N0O0014-88-[K-0086 and the Information Sciences divi-
<ion of the Office of Nava! Research under contract NOO014-86-K-0678.




only is this an exciting intellectual challenge. but it might help alleviate
the notarious problem of getting expertise ont of the culture of experts
and into an operable form. The expert systems community recently
realized that not all experts are good at explicating and explaining their
knowledge. but instructors vary in quality too. so a common practice
nowadays is to acquire knowledge for an expert system from an expert
who is also a good instructor. Often, there are texthooks written by
very good instructors. Utilizing this material requires having the kind
of svstem tnat Dietterich envisioned.

The program described here. ('ascade. is a direct response to Di-
etterich’s challenge. for it can learn how to solve Newtonian mechanics
problems from the same materials that undergraduates learn from. How-
ever. it is onlv a partial solution to the problem. because (‘ascade cannot
read. The information in the prose parts of the textbook is given to it
in a predigested form. As will be demonstrated later. this information
is not as helpful in solving problems as one might think. People and
Cascade acquire much of their problem solving skill by solving problems
and by studying the textbook's worked example problems.

The second objective of the research presented here is to integrate
and deepen the theorv of skill acquisition. As theories go. the theoryv of
cognitive skill acquisition is in its infancy. Theories range all the way
from the highly integrated. nomological theories of certain natural sci-
ences to loose collections of ideas which can be woven together to explain
phenomena. The current theorv of cognitive skill acquisition is in the
collection-of-ideas stage. Given almost any behavior. a cognitive scien-
tist can often string together ideas from psychology and Al that will offer
at least a plausible explanation of the phenomenon. This is certainly an
advance over the state of the art 25 vears ago. However, the theoryv is
not as mtegrated as it could be. For instance. no one has built a com-
putational model of skill acquisition that starts as a novice and slowly
hecomes an expert while being trained on the same material as human
students. Several models of pieces of this process have been built. includ-
ing Sierra (VanLehn. 1990). Pups (Anderson & Thompson. 1989) and X
(Pirolli. 1987). The reason that cognitive science has no simulated stu-
dents is not just because it is technically difficult, but because we do not
know which of the many ideas floating around should be woven together.
Moving the theory of cognitive skill acquisition out of the collection-of-

}» Azconntien For

Seortoum

b= = .
N S :




ideas stage and into a stage of integrated student simulations will re-
quire deep thonght and significant new empirical work. Development
ol student simulations should go hand-in-hand with these empirical ad-
vauces, because such simulations are the only way to demonstrate the
computational coherence and empirical coverage of an integrated theory
of cognitive skill acquisition. Cascade is intended to be a step further in
that it incorporates new empirical evidence from a studyv by Chi. Bas-
sok. Lewis. Reimann and Glaser (1989). However. ("ascade is far from a
complete simulation, because some important cognitive processes, such
as reading. have been deliberately omitted from the model.

Interesting new educational technology may result from developing
the shinulated students that are required of an integrated theory of cog-
nitive skill acquisition. For instance. a simulated student might be a
valuable tool for training teachers. Simulators have heen successful ad-
juncts in training other skills. ranging from flving airplanes to trading
stocks. It may be a worthwhile investinent to use simulators to train
teachers in the skills of selecting material to teach. organizing it. ex-
plaining it. detecting student misconceptions and remediating them. In
addition to teacher training. there are other potential applications for
simulated students as well (VanLehn. 1991b).

The lack of an integrated theory prevents development of many ap-
plications, not just educational ones. The problem is that a theory that
1s in the collection-of-ideas stage often provides multiple or vague expla-
nations of phenomena. which means that it can make only ambiguous
ov vague predictions at best. Yet many applications, such as simulation.
require the theory to make unambiguous. precise predictions. Until our
understanding of cognitive skill acquisition is good enough that we can
make such predictions. many applications are bevond our reach.

This chapter is intended as a summary of the results so far from the
("ascade project. The project has gone through three major phases. In
the first phase. the program was developed and shown capable of learn-
ing Newtonian mechanics correctly {VanLehn & Jones. in press). In the
second phase. the major findings from the Chi et al. study were sitmu-
lated {VanLehn. Jones & Chi. in press). In the third phase. protocols of
each of the 9 subjects in the Chi study were simulated individually. The
third phase is ongoing. so we can present only some of the planned analy-
se<. [n particular. we evaluate the overall fit of C'ascade to the protocols.




which is iportant for seeing how well Cascade functions as a simulated
student and as a knowledge acquisition system that would satisfy Di-
etterich’s challenge. This chapter follows the historical development by
first describing the Chi et al. (1989) studx. then describing Cascade.
then describing how (‘ascade accounts for the Chi et al. findings. then
describing how it simulates individual subjects.

THE SELF-EXPLANATION EFFECT

One of the major open issues in cognitive skill acquisition is nuder-
standing what happens when people study examples. (An example is a
problem together with a solution that is printed or demonstrated for the
student.) Much research has shown that when people are given instruc-
tion consisting of theory. examples and explanations. they relv heavily
on the examples (e.g.. Anderson. Farrell & Saurers. 1984: Sweller &
Cooper, 1983). In some cases they seem to ignore the theorv and expla-
nations. and in other cases their learning is actually retarded by them
(e.g.. LeFevre & Dixon. 1986: Charnev. Reder. & Kusbit. 1990: Ward &
Sweller. 1990). Because examples seem to do much more of the teaching
than was previously thought. it is important to understand how they
work.

Chi o1 al. (19%9) took a direct approach to understanding how stu-
dents study examples. Theyv collected protocols as subjects studied ex-
amples in classical particle dvnamics. the first topic in a tvpical first-vear
college physics course. Nine subjects studied the first three chapters of a
college textbook. then read the prose part of a chapter on Newton's laws.
They took a test on their understanding of the chapter. then studied 3
examples aud solved 25 problems. Protocols were taken as thev studied
the examples and solved the problems. On the basis of the scores on
problem solving. the subjects were divided into two groups. The 4 stu-
dents with the highest scores were called the Good solvers: the 4 students
with the lowest scores were called Poor solvers. and one student was not
analyzed (see C'hi and VanLehn. 1991. for a discussion of the subjects’
backgrounds and the median-split procedure). Since the students in both
groups scored the same on pre-tests, the Good solvers seemed to have
learned more during the experiment. Using protocol analysis, Chi et al.
attempted to find out how the Good solvers imanaged to learn more than




the Poor solvers from the same material. They found four differences:

1. The Good solvers uttered more self-explanations as they studied
examples, whereas the Poor solvers’ comments were mostly para-
phrases of the examples’ statements.

2. All students commented frequently on whether they understood
what they had just read. The Good solvers tended to say that
thev did not understand what thev had just read, whereas the
Poor solvers tended to say that they did understand. However. the
Poor solvers® scores show that they understood less than the Good
solvers. This indicates that the Poor solvers’ self-monitoring was
less accurate than the Good solvers’.

3. During problem solving. the Poor solvers tended to refer back to
the examples more often than the Good solvers.

1. Wlhen the Good solvers referred to the examples. thev read fewer
lines than the Poor solvers. The Poor solvers tended to start at
the heginning of the example and read until they found a useful
line. whereas the Good solvers started reading in the middle of the
example and read ouly one line.

Similar findings have also been observed in protocol studies of stu-
dents learning Lisp (Pirolli & Bielaczyc. 1989: Bielaczyc & Recker. 1991).
electrodynamics (Fergusson-Hessler & de Jong. 1990) and biology (('hi.
de Leeuw. (‘hiu. & LaVancher. 1991). This cluster of findings is called
the self-explanation effect.

THE CASCADE MODEL

A consensus has emerged in both machine learning and cognitive
psvchology that it is ilmportant to distinguish two kinds of learning:

¢ Oue kind of learning is responsible for getting knowledge from the
environment into the mind of the agent. This is called knowl-
edge acquisition in the cognitive skill acquisition literature and
knowledge-level learning in machine learning. There are many
possible learning processes. depending on the tyvpe of instructional



information available in the environment and the type of knowl-
edge 10 he acquired. The (ascade project. for instance, focuses on
liow agents cau learn college physics by studying worked example
exercises and solving problems.

e The other kind of learning increases the effectiveness of knowledge
that is already in the mind of the agent. This is called knowledge
compilation or knowledge tuning in the cognitive skills literature.
and svmbol-level learning in machine learning. This class of learn-
ing mechanisms includes explanation-based learning (EBL). chunk-
ing (Newell. 1990). production composition { Anderson. 1983). and
many others. Somne of these mechanisms provide explanations for
robust findings in the skill acquisition literature (e.g.. Anderson.
1987: Newell. 1990).

In order to determine whether the learning in the Chi et al. study
was knowledge acquisition or knowledge compilation. and to set the stage
for developing a simulated student. we hegan by developing a problem
solver that could solve the problems in the study.! The solver was based
on past mechanics problems solvers (Bundyv et al.. 1979: Larkin. 1983:
Novak & Araya. 1980) as well as our informal inspection of the Chi et
al. protocols. The resulting solver had 62 physics rules and a host of
mathematical and common sense rules. These 62 rules became the target
knowledge hase. The first goal of the ("ascade project was to understand
when they were learned and how.

In order to find out where the target rules could be learned. two peo-
ple who were not involved in the development of the knowledge base
determined whetlier each rule was mentioned anvwhere in the textbook
prior to the point where the examples were introduced. There was 95%
agreement between the two judges. and disagreements were settled by
a third judge. They determined that only 29 of the 62 rules were men-
tioned in the text. The other 33 rules would have to bhe learned during
example studving or problem solving.? This indicates that knowledge

"Actmally, it could solve only 23 of the 25 problems. The other two involved
kinematics knowledge that we did not bother to formalize. These two problems wil!
he ignored throughout the remainder of the chapter.

?Thev conlt also be recalled from earlier training in physics. but there is evidence
that *his seldom occurred {Chi & Vanlehn. 1991: VanLehn, Jones & Chi. in press).




acquisition must he going on during example studying and/or problem
solving. Knowledge compilation alone would not suffice to explain the
subjects” learning.

(‘ascade models two basic activities: explaining examples and solv-
ing problems. Knowledge acquisition goes on during both. Because the
tyvpe of physics problems used in Chi's study involve only monotonic rea-
soning. Cascade uses a rule-based. backwards chaining theorem prover
{similar to Prolog) to implement both activities. A physics example is
presented to (‘ascade as a set of propositions representing the givens
of the problem. a list of sought quantities. and the lines of the prob-
lem s solution. For instance. the example of Figure 1 is represented with
the jnformation of Table [. (‘ascade explains each line by proving that
it follows from the givens and the preceding lines. To solve a problem.
(‘ascade is presented with propositions representing the problem’s givens
and is asked to prove a proposition of the form “The value of Q is X"
for eaclh sought quantity Q. In the process of proving the proposition.
(‘ascade derives a value for the variable X. thus solving that part of the
problent. Although this model of problem solving and example explain-
ing is clearlv too simple to cover all task domains. it suffices for physics
and other task domains dominated by monotonic reasoning,.

("ascade includes two kinds of analogical problem solving. Both types
of analogy begin by retrieving an example and mapping the example’s
givens to the current problem’s givens. These retrieval and mapping pro-
cesses nsuallv correspond to overt behavior. The subjects flip through
1he texthbook pages in order to locate an example. then look back and
forth between the example and problem. comparing the diagram and
text that describe the example’s problem with the diagram and text
describing the problem thev are trving to solve. This behavior gener-
allv occeurs only once per problem. All the examples and most of the
problems are accompanied by diagrams. and usually the subjects would
search for an analogous example after looking at the diagram and before
reading the problem. Thus. we think that the major process of retriev-
ing an analogous problem is based on recalling. finding and comparing
diagrams. This retrieval process was not modeled in (‘ascade. The sys-
tem was simply told which examples the subjects retrieved. and forced
to retrieve the same ones.




Problem: The figure on the left below shows a block of mass m kept at
rest on a smooth plane, inclined at an angle of 35 degrees with the
horizontal, by means of a string attached to the vertical wall. What
are the magnitudes of the tension force and the normal force acting on
the block?

35

35

mg

Solution:
(1) We choose the block as the body.
(2) The forces acting on the block are shown in the free-body diagram
on the right. -
(3) Because we wish to analyze the motion of the block, we choose ALL
the forces acting ON the biock. Note that the block will exert forces on
other bodies in its environment (the string, the earth, the surface of
the incline) in accordance with the action-reaction principle: these
forces, however, are not needed to determine the motion of the block
because they do not act on the block.
(4) Since the block is unaccelerated, we obtain:
F+N+mg=0.

(5) 1t is convenient to choose the x-axis of our referance frame to be
along the incline and the y-axis to be normal to the incline (see figure
above, right).
(6) With this choice of coordinates, only one force, mg, must be
resolved into components in solving the probiem.
{7) The two scalar equations obfained by resolving mg along the x- and
y-axes are:

F-mgsin35=0 and N -mgcos 35« 0.
(8) From these equations F and N can be obtained if m is given.

Figure 1: An example

R




Table 1: An English version of the representation of the example of
Figure |

Problem givens:
The current situation is named Lx.
Ix is a standard-gravity situation.
Block-ix is a block. ’
String-ix is a massless string.
Plane-ix is an frictionless inclined plamne.
Block-ix slides on Plane-ix.
String-ix is tied to Block-ix.
Block-ix is at rest.
Block-ix is above Plane-ix.
String-ix is above Block-ix.
String-ix is to the right of Block-ix.
The inclination of Plane-ix is 35.
The inclination of String-ix is 35.

The mass of Block-ix is m.

Problem songhts:
The magnitude of the tension force on Block-ix due to String-ix.

The magnitude of the normal force on Block-ix due to Plane-ix.

Solution lines:
The set of bodies of Ix is Block-ix.

The set of arrows on the free-body diagram for Block-ix is {an arrow
at inclination 35 pointing up. an arrow at inclination 115 pointing
np. an arrow at inclination 90 pointing down}.

The set of axes on the free-hodv diagram for Block-ix is {an x-axis
at inclination 35, a y-axis at inclination 115}.

The magnitude of the tension force on Block-ix due to String-ix is
0 -0+ (1(mg)sin(35)).

The maegnitude of the normal force on Block-ix due to Plane-ix is
0~ (1tmgieos3nn) + 0.



One of the two kinds of analogy is used to make search control deci-
sions. It comes into play when C'ascade has two or more rules for achiev-
ing a goal and it needs to select among themr. !t uses the analogical
mapping to see if the example's derivation has a goal that is equivalent
to the goal that it is currently working on. If it finds an equivalent old
goal. the rule that achieves the old goal is chosen for achieving the new
goal. This type of analogy is called analogical search control. because it
uses the example as a source of advice on which of several alternatives
to trv urst. For instance, a student might say. *I cannot tell whether I
should project this onto the x-axis or the v-axis. At an analogous point
in the example. they projected onto the x-axis. so I'll try that too.”
Analogical search control is also used in the Eurcka svstem (Jones. 1989,
this volume).

The second tvpe of analogy is used when ('ascade cannot find a rule
that will apply to the current goal. It uses the analogical mapping to
trv to find a line in an old example that it can convert into an appro-
priate rule. It looks {ur a line in the example’s solution that mentions
the cnrrent goal (or rather. a goal equivalent to the current goal under
the wapping). Most lines are equations. so it is simple to convert a
line to a temporary rule which can then be used to trv to achieve the
goal. For instance. a student might sav. “I need some way to get the
tension of string A. The example has a line saving that string 1's tension
is g sin(3M. Those two strings are analogous. and 30 degrees is a; al-
ogous to 45 degrees in this problem. so 1 bet that the tension of string
Ais mgsin{45).” This tvpe of analogy is called transformational anal-
ogy. after a similar method exrlored by Carbonell (1986). As Carbonell
discovered. transformational analogies often vield wrong answers.

A major difference hetween the two kinds of analogy is that analogical
search control refers to the rules that achieved goals during the solution
of an example, whereas transformational analogy only refers to the lines
of the solution. Wheun ('as~ade explains an example. it stores in memory
a set of triples. each of which contains the example’s name. a goal and
the role that achieved it. These triples are what analogical search control
searchies through. If an example is not explained. then no derivation is
recorded. so analogical search control cannot get anv advice from that
example. On the other hand. transformational analogv refers only to
the <olntion lines. These are present regardless of whether the example
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is explained. since they merely represent what the student can see as
they look at the page containing the example. Thus, transformational
analogy can function even if the example has not been explained.

( ascade’s main knowledge acquisition method is called explanation-
hased learning of correctness or EBLC' (VanLeln. Ball & kowalski,
1990). The basic idea is to divide knowledge into domain knowledge
and non-domain knowledge. Domain knowledge represents rules that
the student believes to be correct and appropriate for the task domain.
Non-domain knowledge represents rules that are believed to be incorrect
or relevant only to other task domains. The most important non-domain
rules for learning are overly general rules. They can apply to many situa-
tions. hut thev often draw incorrect conclusions. For instance. a domain
rule is “If there is a tension force F caused by a string S. and the tension
in the string is T. then the magnitude of the tension force is also T.”
An overly general rule is. “If there is an entity F. with a part S. and a
property of part S has value T. then a property of the entity F also has
value T." This rule happens to be a generalization of the domain rule.
but as argued in VanLehn and Jones (in press). not all domain rules have
plausible overly general counterparts.

The basic idea of EBLC' is to use overly general rules whenever domain
ritles fail. then save a specialization of the overly general rule as a new
domain rule if all goes well. For instance. the domain rule just mentioned
is learned by specialization of the overlv general rule. EBLC begins
when (ascade reaches an impasse that is caused by missing rules in
the knowledge base. An impasse is defined to be an occasion when the
current goal matches none of the known domain rules or problem givens.
Impasses can be caused by missing domain knowledge or by reaching the
end of a dead end path in the search space which could have heen avoided
by making a hetter search control decision earlier. ('ascade explicitly
chocks for the latter possibility before deciding that an impasse is caused
by missing knowledge. To resolve a missing-rule impasse. (‘ascade tries
to use an overly general rule to achieve the stuck goal. If the use of such
a rule ultimately leads to achieving the current top level goal (i.e.. to
explain a line or to find the value of a sought), then (‘ascade forms a
new domain rule that is a specialization of the overly general one. The
specialization is chosen so that it is also a generalizatiou of the particular
nsage. For instance. on one problem Cascade could not determine the

11




pressure in a part of a container even though it knew the pressure in the
whole. Since there was no alternative solution to the problem nsing its
domain rules. Cascade decided that it was at a missing-rule impasse. It
applied the overly-general rule. “If an object is composed of parts. then
the property values of the parts and the wholes are the same.” This rule
application ultimately led to a solution of the problem. (‘ascade then
formed a new domain rule. *If a container has a part. then the pressure
in the part is equal to the pressure in the whole.” Thus, ('ascade learned
a correct rule of physics by specializing an overly general rule in order
to resolve an impasse caused by missing domain knowledge.

Cascade has a second technique for learning new rules. It applies only
when it is explaining an example and attempting to prove a proposition
that has no variables. If it cannot prove the proposition with either
domain rujes or overly general rules, then it gives up and simply accepts
thiat the proposition is true. It also builds a rule that sanctions this in
future similar cases. The rules sav, in essence. that if a later problem
is analogous to this problem. then the analog to this proposition can
be assumed trune for that problem too. This tvpe of learning is called
analtogical abduction.

From a machine learning Hoint of view. Cascade does hoth knowledge-
level learning (via LBLC and analogy abduction) and symbol-level learn-
ing (via the saving of derivations. which are used by analogical search
control). EBLC and analogy abduction are both triggered by impasses,
so they will often be referred to as impasse-driven learning.

As a summary, Table 2 lists ("ascade’s main processes. Notice that a
new one has heen slipped in. ("ascade can be told to ignore an example
line instead of self-explaining it. a trivial process labeled “accentance”
in the table,

(ascade’s learning is similar to those proposed by existing .. - cies
of <skill acquisition. We believe that analogical search control can even-
tually provide an account for the practice effects usuallv explained by
knowledge compilation (Anderson. 1983). chunking (Newell. 1990) and
other learning mechanisms. EBLC' is similar to proposals by Schank
(19%6). Lewis (1988), Anderson (1990) and others. which also acquire
new knowledge at impasses by specializing existing, overly general knowl-
edge. Although all these models of skill acquisition are similar in spirit,
they differ in significant wavs. For more on the Cascade system and a

12




Table 2: ('ascade’s major processes
Example studving

e Self-explanation: Prove a line via backwards chaining.
e Acceptance: Ignore the example line.
Problem Solving

e Regular problem solving: Find a value for a sought via backwards
chaining. At search control choice points. use analogical search
control to decide which rule to apply.

e ‘Transformational analogy: Find a line in an example that could be
adapted to achieve the current goal.

Impasse-driven learning

e Explanation-based learning of correctness (EBLC'): Apply an
overlv general rule. If that leads to success. save a specialization
as a new domain rule.

e Analogy abduction: Like transformational analogy. except a rule
is built so that future occurrences of the goal will be handled the
sane wav.

13




detailed comparison with its predecessors. see VanLehn and Jones (in
press),

MODELING THE SELF-EXPLANATION EF-
FECT WITH CASCADE

A simple hypothesis for explaining the four major differences between
Good and Poor solvers is that Good solvers chose to explain more ex-
ample lines than Poor solvers. To test this. several simulation runs were
made. All these simulations began with the same initial knowledge. The
initial domain knowledge consisted of the 29 phvsics rules that three
judges found to be present in the text (see the discussion at the begin-
ning of the preceding section). The rest of the initial knowledge hase
consists of 45 non-domain rules. of which 2% represented conmmon sense
physics (e.g.. a taut rope tied to a object pulls on it) and 17 represented
over-generalizations, such as “If there is a push or a pull on an ohject at
a certain angle. then there is a force on the object at the same angle.”
See Vanlehn, Jones and Chi (in press) for a list of the overly general
rules,

In principle. ('ascade can use regular problem solving or transforma-
tional analogy at any goal. For the sake of these experiments. we gave
it a fixed strategy. It would first try regular problem solving. If that
failed due to missing domain knowledge. then impasse-driven learning
was applied. Transformational analogy was used onlv as a last resort.

The first simulation was intended to model a very good student who
explains every line of every example. (Cascade first explained the 3 ex-
amples in the study. then it solved the 23 problems. (The 2 problems
that are not solvable by the target knowledge were excluded.) It was
able to correctly solve all the problems. It acquired 23 rules: R while
explaining examples and 15 while solving problems. All but one of the
rules was learned hy EBLC': analogical abduction learned the other. The
new rules are correct physics knowledge. allowing for the simplicity of
the knowledge representation. Moreover, theyv seem to have the right
degree of generality in that none were applied incorrectly and none were
inapplicable when they should have been applicable. However, some of
the rules dealt with situations that only occurred once in this problem
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set. so thev were never used after their acquisition.

The second simmlation was intended to simulate a very poor student
who does no sell-explanation. Because none of example lines were ex-
plained. there was no opportunity for EBLC to learn new rules during
example studving. nor were any derivations left behind for use by analog-
ical search control during later problem solving. Cascade was given the
same 23 problems given to it in the good student simulation. It correctiy
solved 9 problems. Apparently these problems require only knowledge
from the text. As ("ascade solved these problems. ('ascade learned 3 cor-
rect rules via EBLC. On 6 other problems. ("ascade found an incorrect
solution, EBLC did not occur on these problems. Ou the remaining R
problems. Cascade failed to find any solution or its search went on for
so long that it was cut it off after 20 minutes. Although EBLC was used
extensively on these problewms. the rules produced were alwavs incorrect.
On the assumption that a poor student would not believe a rule unless it
fed to a correct solution to a probleni. rules acquired during failed solu-
tion attempts were deleted. Thus. the poor student simulation acquired
only 3 rules and solved onlv 9 problems correctly.

Explaining the self-explanation correlations

Cascade should be able to explain the four differences observed by C'hi
et al. (19%9) between Good and Poor solvers. Assuming that the num-
her of self-explanatory utterances is directly proportional to the number
of lines explained during example studving. the job facing Cascade is
to explain why explaining more lines causes better scores on quantita-
tive post-tests (finding 1). more accurate self-monitoring (finding 2) and
more frequent (finding 3) and more economical reference to the examples
(hinding 1).

The contrast between the good and poor student simulations indi-
cates that (‘ascade can reproduce the positive correlation between the
nnmber of example lines explained and the number of problems solved
correctlv. During the good student simulation, it explained all the exam-
ple lines and got all 23 problemis correct: on the poor student simulation.
it explained none of the example lines and got 9 of the problems correct.
Knowing the operation of (‘ascade. it is clear that having it explain an
intermediate number of lines would cause it to correctly answer an in-




termediate number of problems. So the two extreme points (the two
simulations) plus ("ascade’s deterministic design are sufficient to demon-
strate the main finding of the self-explanation effect.

One of tlhie major advantages of a simulation like C'ascade is that one
can run it many times with different components turned off in order 10
ascertain why it sncceeds. In partienlar. 20 rules were learned by the
good student simulation and not by the poor. For each rule, we can find
out why self-explanation allowed (ascade to learn it.

First, when more lines are explained. ('ascade is more likely to stu-
ble across a gap in its domain knowledge. Such missing knowledge causes
hmpasses, which lead to impasse-driven learning and the acquisition of
new rules during example explaining. Of the 20 rules that were learned
during the good student simulation and not the poor. & (409) were
lei ined while explaining examples.

Analogical search control also aided the good studeat simulation’s
learning. When more lines are explained. more derivations hecome avail-
able for analogical search control. Analogical search control tends 10 keep
(‘ascade on solution paths during problem solving. and this means that
any tmpasses that occur are more likely to he due to missing domain
knowledee. Thus, EBLC is more often applied to appropriate impasses.
and thus more often generates correct domain rules. Of the 20 rules. 9
(3% ) require analogical search control for their acquisition.

1 he acquisition of rules during example studying helps produce con-
texts during problem solving that allow EBLC to learn more rules during
probleny solving even without the aid of analogical search control. Of the
19 rules. 3 (1577 ) can be acquired during problem solving even when ana-
logical search control is turned off. These new rules also contributed to
the improvement in problem solving. Table 3 summarizes the learning
of the two rans.

Cascade provides a simple explanation of the correlation between the
amount of self-explanation and the accuracy of self-monitoring state-
ments. The explanation assumes that negative self-monitoring state-
ments (e.g.. 1 don’t understand that™) correspond to impasses. and
that positive seif-monitoring statements (e.g.. “Ok. got that.”) occur
with some probability during any non-impasse situation. When more
example lines are explained. there are more impasses. and hence the
proportion of negative self-monitoring statements will be higher. In the
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Table 3: Rules learned during Good and Poor student simulations

wuood Poor When acquired
|

N 1} Example studving
Problem solving
3 3 No ex. studving rules. no analogical search control
3 0 With ex. studying rules. no analogical search control
] 0 With ex. studving rules. with analogical search control

21 3 Total

extreme case of the poor student simulation. where no example lines are
explained. all the self-monitoring statements during example processing
wonld be positive. which is not far off from Chi et al.’s observation that
8SH' of the Poor solver’s self-monitoring statements were positive.

T'he third and fourth findings involve the frequency and specificity of
analogical references during problem solving. The number of references
made by analogical search control and transformational analogy were
connted. We assumed that only some of the analogical search control
references to the derivation were overt. and that the others were mental
references that would not show up in the Chi et al. data. This gave us a
prediction of the frequency of analogical references. To get a prediction
of the specificity of analogical references (i.e.. the number of example
lines read per reference). we counted the number of lines read by trans-
formational analogyv before it found one it could use. and we assumed
that someone using analogical search control would go directly to the line
whose derivation contained the sought goal. Given these assumptions.
the good student simulation produced fewer and more specific analogical
reforences than the poor student simulation. thus modeling the Chi et
al. finding (see VanLehu. Jones & Chi. in press. for details).

Discussion

Although we controlled Cascade’s behavior during example studying,
by either telling it whether to explain the examples or not, its behavior
during problem solving was determined solely by how much it learned
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during example studving. Qualitatively, the behaviors of the Good and
Poor runs were guite similar 10 the behaviors of the Good and Poor
students during problem solving. The good student simulation tended
to stayv on solution paths. use regular problem solving more often than
transformational analogy. and learn something from the occasional im-
passes it encountered. The Poor student simulation tended to wander
down nnproduactive paths, use transformational analogy more often. and
flearn nothing from the many impasses that it encountered.

These properties of ("ascade’s problem solving behavior are consistent
with a preliminary analysis by Chi. VanLehn & Reiner {1988). who ana-
Ivzed the protocols of a Good solver and a Poor solver as they solved the
same problem. The Poor solver’s protocol was divided into 77 episodes.
and of these. 30 (399 ) resulted in impasses.®> Many of these impasses
seemed to result in acquiring incorrect beliefs. In contrast. the protocol
of the Good solver was divided into 31 episodes. of which only 7 (23%7)
resiulted in impasses. In 6 of these. the Good solver seemed to learn
a correct piece of knowledge. This preliminary analvsis indicates that
the I’oor solvers had proportionally more impasses (39%.) than the Good
solvers (2397) while problem solving. and that the resulting knowledge
was more often jncorrect. This is just what ('ascade did. too.

Example studving took up a relatively small proportion of the time
that subjects spent during the studyv. Not only were there only 3 exam-
ples compared to 25 problems. the subjects spent less time on average
stwdving an example than solving a problem. The learning strategy of
selfl-explanation was active only during example studving. so it comes as
a surprise that such a proportionally small change in work habits caused
such a large change in the amount learned. Perhaps the most important
result from the Good/Poor simulations is an explanation for this coun-
terintnitive finding. The simulations showed that only 40% of the rules
learned by the good student simulation and not by the poor were learned
during example stndving. The others were learned during problem solv-
ing. This came as somewhat of a surprise to us. There were two bhasic
reasons that self-explanation increases learning during problem solving,.

"An impasse was identified as an outcome of an episode whenever the student
believes that the next step that should be executed cannot be performed. Most (98%)
of the impasses were identified by explicit statements such as “I don't know what to
do with the angle.” or “So that doesn’t work either.”
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e The rules learned earlier allowed (ascade to travel down correct
solntion paths and reach impasses at places were jt was indeed
missing knowledge. Without these rules. the poor student simula-
tion could not reach these productive impasses.

e The derivational triples acquired during rederivation of the exam-
ple lines served as search control advice during problem solving.
thus tending to keep the good student simulation on solution paths
that led to productive. missing-knowledge impasses. The poor stu-
dent simulation tended to wander off the solution paths. and reach
impasses where there was nothing valuable to be learned.

It is doubtful that these interactions would have been discovered without
a simniation as detailed as C'ascade.

These results taught us about self-explanation per se. bhut the use of
idealized student simulations leaves open the question of whether (as-
cade can actually model a real student. The next study tackles this
question.

MODELING THE PROTOCOLS OF INDIVID-
UAL SUBJECTS

The ohjective of the study reported in this section was to find ont how
close Cascade can come to modeling individual subjects. This study was
undertaken in the same spirit as the ones in Newell and Simon (1972}:
Given a protocol. how closely can a simulation be fit toit? One difference
hetween this study and those of Newell and Simon is that the task domain
is phvsics. which is arguably a much richer task domain than the ones
thev studied. However. a more important difference is that considerable
learning took place during our protocols.

A third difference is that our protocols are much longer than Newell
aud Simon’s protocols. which made it impossible to employ their method
of analvsis. Lach of the 9 subjects contributed protocols for 3 examples
and 25 problewms. sa there were 252 protocols to analvze. Each protocol
averaged about 12 pages. for a total of 3000 pages. (reating problem
behavior graphs for all of them would be far too much work. Thus, part of
the challenge in this study was to devise feasible methods for measuring
the mateh between the behaviors of ("ascade and the subjects.
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Subject  Cascade

Figure 2: Matching the behaviors of (‘ascade and a subject

Figure 2 shows how the match between the behaviors of (‘ascade and
a subject can be viewed. Region 1 represents behavior that the sub ject
exhibited and (ascade did not. Region 2 represents the behaviors that
are the same for both agents. Region 3 represents ('ascade behaviors that
the subject did not exhibit. The behaviors in region 3 have two sources.
Some are computational expediencies: We couldn’t get (‘ascade to do
exactly what the subject did. so we had it do something else instead.
That “something else” shows up in region 3. A Cascade behavior will
also he put in region 3 if it is plausibly something that the subject
did. but the protocol happens to show no signs of it occurring. For
instance. it is known that not all cases of impasse-driven learning show
np as hesitations or negative comments in protocols (VanLehn. 1991a).
Whenever (‘ascade’s impasse-driven learning is not reflected by overt
signs of an impasse in the subject’s protocol. that behavior is classified
as region 3 behavior.

In all of the analvses presented helow. we tried to determine two
ratios: the amount of Cascade behavior that is matched by the sub ject
{region 2 divided by the union of regions 1 and 2). and the amount of
subject behavior that is matched by Cascade (region 2 divided by the
nnions regions 2 and 3). In order to make these comparisons. we had to
find a way to count behaviors. which implies choosing a unit of analysis.
This was not hard for the first ratio, because Cascade's behavior is well
defined. For instance. we usually used a goal as the unit of analysis and
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counted the number of goals generated by Cascade that were matched
or unmatched by the subject. It was not easy to determine a nnit of
analvsis for the other ratio. the percentage of subject behavior matched
by (‘ascade. A variety of units were used. depending on the tvpe of
analvsis being conducted,

Five analvses were conducted (see Table 4). Because we are more
interested in getting ('ascade to simulate the subjects’ acquisition of
physics rules than in getting it to simulate the chronology of their rea-
soning. four of the analvses ignored the order in which Cascade and
the subject made inferences. Both ("ascade’s behavior and the subject’s
hehavior were reduced 10 sets of inferences. Set intersections and differ-
ences were calculated. just as shown in Figure 2. However. we cannot
entirelv ignore the chronology of inferencing. since the earlier study in-
dicated that analogical search control affects the location of impasses.
which in turn determines what can be learned during problem solving.
So a fifth analvsis was conducted in order to see if the subjects™ choices
during problem solving could be predicted by analogical search control.
After o description of how Cascade was fitted to the protocols. eacl: of
these analvses will be presented.

Fitting Cascade

Fitting (‘ascade means setting values for parameters so that the pro-
gram’s hehavior matches the given subject’s behavior as closely as pos-
sible. The parameters represent the products of cognitive processes that
are not modeled by Cascade. and vet (ascade’s performance depends
on the ontputs of these unmodeled processes. so thev cannot be ignored
entirely,

There are 1two major types of parameters. The first controls initial
knowledge. which refers to the knowledge possessed by a student or (as-
cade just prior to studving the examples. The student s initial knowledge
comes from reading the first several chapters of the texthook and from
their earhier studies of phvsics and mathematics. Cascade does not model
these processes. so it must be given an initial knowledge base. Cascade’s
initial knowledge base was alwavs a subset of a fixed “rule library.” The
library consists of 3 buggy physics rules,® the 62 rules that constitute

*Onr buggy rule applies F = ma to any force and not just a net force. Another
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Table 1 Analvses comparing Cascade’s hehavior to the subjects™ behav-

or

1. How many of (‘ascade’s example studving inferences were also
made by the subject?

[ 4

How many of the subject’s example studving inferences were also
made by (‘ascade?

3. How many of (‘ascade’s problem solving inferences were also made
by the subject?

1. How manyv of the subject’s problem solving inferences were also
made by (‘ascade?

5. Do the search control decisions made by the subject match those
made by ('ascade?

the target domain knowledge. and the 45 non-domain rules mentioned
cartier. Selecring an initial knowledge base can be viewed as setting 110
binary parameters. one for each rule in the library, where 1 means that
the rade s inciunded in the initial knowiedge base. and 0 means that the
rule is excluded.

The second tvpe of parameter controls the depth of seif{-expianation.
When studving examples. subjects choose to explain some lines but not
mhers. Fyven when thev do explain a line. thev mayv explain it only
down to a certain level of detail and decide to take the example's word
for the rvest. For instance. they might explain most of the line. F,, =
— I, cos( 301, but not bother to explain where the minus sign comes from.
Cascade does not model how the subjects decide which lines to explain
and how deeply to explain them.® To simmlate the output of this decision

asserts that the mass of a body is equal to its weight. The third assumes that the
sign of all projections is positive.

*There are many possible reasons for why subjects do not explain everything. For
instance, the subjects may feel that they already know evervthing that they could
learn from explaining the line, or they may feel that explaining such details can be
left until auch time as theyv really need to know them. Deciding how deeply to explain
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making, process, extra propositions were entered into the descriptions of
examples.  Whenever (‘ascade is about to explain something, it first
cheeks to see if accept(P) is in the example’s description. where P is
the thing it is about to explain. If an accept(P) is found. (ascade
merely accepts P as explained without any further processing. Viewed as
parameter setting. this amounts to associating a binary parameter with
every explainable object. and setting it to 1 if it should be explained and
0 if it shonld be accepted.

The accept propositions are set by inspecting the subject’s protocol.
If the subject merely reads a line and savs nothing else about it. then
an accept proposition is entered for the whole line. If the subject omits
discussion of a detail in a line. then an accept is placed around the
Cascade goal that corresponds to that detail. In this fashion. the data
completely determine which lines and parts of lines are explained by
(ascade.

On the other hand. there is no wav to easily determine what the
snhject’s initial knowledge is. The whole protocol must be examined. As
will he seen later. we sometimes made mistakes in selecting the initial
knowledge. We should have fixed our mistakes. rerun the simulations
and redone the comparisons of the program’s output with the protocols.
This will require months of work. so for this chapter. we are forced to
report the analvses with our imperfect choices of initial knowledge left
tact,

How many of Cascade’s explanations are matched?

This section discusses the behavior of (ascade and the subjects as
thev explained examples. Goals were used as the basis for dividing ('as-
cade’s hehavior into countable units. Each goal produced by (‘ascade
was classified according to the method used to achieve it:

e Regular explanation: (‘ascade used one of the domain rules.

e Impasse with learning: (Cascade reached an impasse. successfully
applied an overly general rule, and learned a new domain rule via
EBLC or analogical abduction.

a line is a fascinating topic for future research.
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e Accept without explanation: The goal was not processed any fur-
ther, but merely accepted as true withont proof. hecanse the ex-
ample’s description contained an “accept™ proposition for it.

Aggregating across the simulation runs of all 9 subjects. there were
1121 goals. We located each of these goals in the subjects’ protocols.
and based on the talk surrounding them. classified them into the same
three categortes plus a new one:

o lmpasse with learning: If the subject paused. complained about
the goal or in some other wav showed signs of being stuck. then we
classified the goal as being achieved by impasse-driven learning.

o Regular explanation: If the subject merelv mentioned the goal or
its conclusions without any fuss. or the subject said nothing at all
about this goal but did mention its subgoals. then we classified the
goal as being solved by regnlar explanation.

o \ccept without explanation: If the subject said nothing about this
goal nor its subgoals. then the goal was classified as being accepted
without explanation.

e Jmpasse and accept: Sometimes subjects clearly tried to explain a
goal. but couldn’t do it at all. so they just accepted the goal without
proof. This is different from the other kind of acceptance. where
the subject did not even try to explain the goal. It is different from
the other kind of impasse hecause no learning occurs.

Table 3 shows the 1121 goals and how thev were classified. Most
(1061 = 9+ 2 + 651 + 396) goals were processed the same way by both
Cascade and the subject. so 9557 of Cascade’s behavior was matched by
subject hehavior., which is highly significant (p << .001. Chi-sqnared
test). In order to get a gqualitative understanding of the shortcomings
in Cascade’s model of the protocols. each of the off-diagonal cells is
disenssed.

There were 7 cases where (‘ascade learned a rule and the subjects
were coded as accepting the goal. All ¥ cases occur at the same point.
on a line where the example savs. “Consider the knot at the junction of
the three strings to be the bodyv.” Explaining this line causes Cascade




Table 5: Praportions of Cascade actions matched by subject actions

Csascade Subjects

impasse impasse Regular] Aoccept

resolved] unresolved| explanation| silently] Totals.
impasse + EBLC ¢ ] 1 q 0 18
Impasse + Anal. Abduct. 0 2 0 7 o]
Regular expianation 0 0 65 3 OA €03
Accept w/o expianation 0 4 0 306 400
Totais 9 [ 664 442 1121

to learn a new rule via analogical abduction. However. ouly 2 of the 9
subjects commented about this rule during example studying. The other
7 said nothing at all about the line wherein this rule would be learned.
so they were coded as accepting the goal without proof. We could have
made (‘ascade accept the goal as well. which meant that it wouldn't learn
the knot rule. During later problems that had three strings converging
on a knot, this would cause C'ascade to reach an impasse and use trans-
formational analogy. Unfortunately. ('ascade’s transformational analogy
mechanism is not powerful enough to make use of the knot-is-a-body
line in the example. When we increased its power so that it could use
this line. it hecame too powerful and would draw analogies that were
so far fetched that no subject would cousider them. This led us to in-
vent analogical abduction. which is a novel type of machine learning (see
VanLehn & Jounes. in press. for discussion). In order to test it out. it
was included in (‘ascade. However. it is clear from this analvsis that
there are empirical problems with it. If an example's line really does
cause analogical abduction. which is a form of impasse driven learning.
then more subjects should have shown impasses. Ve now believe that
transformational analogy is actually the source of transfer between the
example line and problem solving. and that the two subjects who had
impasses here should be classified as “impasse and accept.” rather than
as learning a new rule. As will be seen later. there are other sigus that
Cascade’s model of transformational analogy is flawed.

There were 10 cases wlere (‘ascade learned a rule and the subjects
were coded as doing regular explanation. There are two possible ex-
planations of this discrepancy. Either the subjects really were doing
impasse-driven learning, but they showed no signs of it in the protocol,
or the subjects knew the rule already and were simply applving it here
rather than learning it. Since the data are consistent with both explana-




tions. the interpretation depends on the prior probabilities of possessing
the rules in gquestion. All but one of the ten rules were not mentioned in
the textbook. so they are less likely to be in the subjects” initial knowl-
edge. The rule that is mentioned in the textbook determines the sign of
a projection of a vector onto a negative axis. However, three sub jects
showed clear signs of impasses when this rule was first used. and three
nsedd a huggy version of the rule that alwavs assigned a positive sign.
The correct sign rule appears to be hard to learn and/or recall from the
text for 6 of the 9 subjects. so it was probably not known by the other
subjects either. Thus. because none of the rules involved seem likely to
hein the subjects” initial knowledge. we suspect that all 10 cases in this
cell of Table 5 correspond to impasse-driven learning events that were
not displaved by the subjects.

There were 4 cases where the subject clearlyv tried to explain a goal
but failed. On subsequent problems. the subject would explicitly refer
back to these points in the examples and use transformational analogy.
This is just what the two subjects who were coded as doing analogical
abduction do. so that is why we now believe that there is no evidence
for analogical abduction.

There are 39 cases where ('ascade did regular explanation aud the
subjects were coded as doing accepts. Of these. 35 occurred when ('as-
cade was trving to explain a force diagram. According to its rules. figur-
ing out which forces exist and determining their directions are subgoals
deeply embedded beneath the goal of drawing the force diagram. Some
subjects discussed the forces without mentioning the force diagram. Ei-
ther they were silently explaining mauyv of the details of the force dia-
gram. or thev ignored the force diagram and “just knew™ that it was
important to explain the forces. We think the latter is more plausible.
bnt we cannot easily model it without changing the goal structure em-
hedded in Cascade’s rules or ("ascade’s model of accepting the example’s
statements without proof.

Stepping back from the details. there are several results from the
analvsis in Table 5. It is clear now that (‘ascade needs several kinds of
revisions: (1) Analogical abduction should be eliminated and transfor-
mational analogy strengthened. (2) The goal structure and/or the ac-
ceptance mechanism need to be revised in order to handle some sub jects’
explanations of free-hody diagrams. (3) The subjects showed impasse-
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like behavior on 4 occasions, but seemed to learn nothing from them.
This is cnrrently not an option with Cascade. It should he changed so
that one of its responses to an impasse is just to accept the stuck goal
as true without learning anything.

Another result concerns the handling of impasses. (ascade had 19
impasses where learning occurred. and of these. the subjects showed
impasse-like behavior on 9. If we believe the codings. then 48% of the
subject’s impasses where learning occurred were visible in protocol data.
and the other 529 were the victim of the usual incompleteness of protocol
data. In the VanLehn (1991a) study of impasses in strategy discovery. ‘
there were 11 learning events. of which 8 (73%) were marked by iinpasse-
like behavior on the subject’s part. This is consistent with the impression
that one gets from reading the protocols. which is that the subject in the
VanLehn (1991a) study verbalizes much more of her thoughts than the
subjects in the Chi et al. (19%9) study. Thus. although the proportion
of “silent™ impasses is higher in the present study. it is not inconsistent
with the earlier studyv’s proposition.

How many of the subjects’ explanations are matched?

The preceding section evaluated the match in one direction only. by
seeing how much of Cascade’s behavior is matched by subject behavior.
This section evaluates how much of the subject’s behavior is matched bv
(‘ascade behavior.

In order to do this. we extended an analvsis by Chi and VanLehn
(1991). They first coded every utterance in the example studving pro-
tocols as either a phyvsics explanation. a mathematical explanation or
one of several other kinds of utterances. Theyv then coded each physics
explanation into an if-then rule that presented the gist of the subject’s
contment in a uniform. more easilv understood format. We extended
this analvsis by including the mathematical explanations as well and by
vorrecting what we felt were a few minor mistakes in the earlier analvsis
of physies explanations.” Finally. we determined whether each rule ap-
parently used by the subjects was also contained in Cascade’s knowledge.

1t was usually clear what the action sides of these rules should be. but inferring the
preconditions and the generality of the rules often required making some assumptions.
Sometimes we disagreed with the assumptions made in the earlier analysis.




Table 6: Subject’s explanations during example studying

Explanationst Categories
143] Matches Cascade (63%)
6 1] Outside task domain (27%)

23 Mathematical manipulations

9 Editting part a to solve part b
16 Extra example lines
13 Units or terminology
61 Total
23| Inside task domain (10%)
Incorrect explanations, retracted
Acceleration and motion
Abstract, partial plans
Global planning from Chi et al.
Miscellaneous, opportunistic

23 Total

227| Grand total

AOWOHh®

Some of this knowledge appeared explicitly as Cascade rules, while some
of it was implicit in Cascade’s rule interpreter (e.g.. algebraic knowledge).

Of the 227 total explanation episodes found in the protocols. we de-
termined that 143 (63%.) were matched by Cascade explanations, while
R4 were not. This indicates that (‘ascade models a large portion of the
suhjects® explanatory behavior. However, there are also many explana-
tions that (‘ascade does not appear to account for. We categorized these
explanations in order to determine whether Cascade should be expected
to make them (see Table ).

Of the X4 explanations. 61 concerned reasoning that was outside the
domain of cognition being modeled. There were four classifications:

e 23 explanations concerned mathematical inferences that (‘ascade
did not need to immake because it had either been given the informa-
tion in the problem statement (e.g.. certain geometric information
was provided to it), or it did not simplify its answers.

e 9 explanations occurred exclusively on part b of one example. Part
a of this example describes a static situation where a string is hold-
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ing a block on an inclined plane. Part b of the example asks one
to find the acceleration of the block when the string is cut. Sub-
jects explained part b by “editing” the explanation of part a. For
instance. one editing rule was “If a force is removed from a static
case and there is no friction. the body will move.” (‘ascade does
not reason about part b of the example in this manner. Rather,
the svstem treats parts ¢ and b as two distinct examples.

e Sometimes an example would contain a few lines that would em-
phasize aspects of the problem that were not germane to solving it
or would discuss limiting cases (see Figure 1. line 3). Although we
did not ask Cascade to explain these lines, the subjects sometimes
would. and 16 of their explanatious were of this tvpe.

o 13 explanations involved miscellaneous comments about the exam-
ples that were judged to represent knowledge outside of the task
domain as formalized in ('ascade. For instance. we did not bother
to model reasoning with units. so the statement. “In the English
svstem. slugs are mass and pounds are weight.” is considered out-
side the task domain.

The remaining 23 explanations are all relevant to the domain modeled
by Cascade, so it should probably generate them. They fell into three
classifications.

o X explanations appear to have been generated tentatively then re-
tracted. They are all incorrect statements about phvsics, and the
subjects seem to have revised their explanation a short time later.
An example is. *If the two bodies in an Atwood’s machine have the
same acceleration. then they are not moving.” How the subjects
generated these conclusions is a bit of a mystery. although some are
clearly the results of overly general rules. For instance. one sub ject
said that one can calculate the tension in a string by adding the
tensions in its parts. He probably generated this explanation by
applying an overly general part-whole rule that works correctly for
quantities such as volume, mass and weight.

o 6 explanations concerned the relationship between motion and ac-
celevation.  Of these. 1 explanations stated essentiallv the same

20




thing: “If a body moves, then it has a non-zero acceleration.” An-
other explanation said. “If a body has motion on an axis. then it
has acceleration on that axis.” and the last explanation said. “If
acceleration is zero. then nothing is moving.” These all stem from
the same incorrect conception of acceleration as speed. which is
very conunon and hard to remove (Reif. 1987), (ascade shiould
also be equipped with this misconception. Even though these new
rules would alter Cascade’s model of the subjects’ explanation of
examples. we do not expect that thev would change ('ascade’s be-
havior on later problems. This is because the problems all deal with
acceleration and do not mention concepts like velocity or “motion.”

3 explanatiouns articulated an abstract. partial plan for solving the
problem. For instance. one explanation said “The weight of the
block in the string example can be computed by figuring out the
tension in the strings.”™ This rule represents the top level of an
abstract plan for determining the weight of the block. C(ascade
does not do hierarchical planning. but this rule provides evidence
that perhaps it should. In particular. we would probably find more
evidence for planning in the problem solving protocols. Planning
did not have much of a chance to emerge during example studying
hecanse subjects are mostlyv led by the hand through the example
solutions. so there is no real need to plan.

e i explanations defv classification. so thev are simplyv listed below

1. The bodyv is the thing that the forces are acting on.

2. Tension is important hbecause it transmits the force hetween
the blocks.

3. The acceleration in an Atwood’s machine is cansed by gravity.

4. U the right mass is greater than the left mass in an Atwood’s
machine. then the machine will accelerate downward.

]

. An upward force can act against gravity to keep a body from
falling down.

. Most forces are gravitational.
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All 6 explanations are true statements. However, they are not
relevant to the goal of solving the problem. which is why (ascade
did not make then.

This analvsis indicates that of the 227 explanations uttered by sub-
jects, 113 (6357 ) were matched by Cascade’s explanations. 61 (27% ) were
ontside the task domain being modeled. and 23 (10%) are explanations
1hat Cascade shonld make bhut does not.

(‘ascade embhodies a hvpothesis about explanation, which is that ex-
planation of solution lines in physics examples consists of rederiving
them. This is a kind of local explanation. in that C'ascade focuses only
on the current solution line. It does not step back and try to see a
global pattern that spans all the solution lines in an example. This may
seem somewhat unusual. as other models of example explaining (e.g..
VanLehn. 1990: Reimann. in press) emphasize global explanation. How-
ever. from one point of view. there is little point in global explanation of
physics examples. Because later solution lines use results from earlier so-
Intion lines. doing local explanation of the later lines ties them together
with the earlier lines. vielding an overall coherent structure. From an-
other point of view, there is great henefit in global explanation. because
it tnrns out that all the examples have a similar chronological structure:
one first chooses hodies. then draws a diagram showing all the forces
acting on the bodies. chooses coordinate axes. instantiates Newton's law
along each axis. and solves the resulting svstem of equations. The text-
book even mentions this procedure. One might expect the subjects to
look for snch a global. chronological structure. perhaps by first locally
explaining all the solution lines. then reflecting on the whole solution to
see il the overall structure made sense. However. the subjects produced
onlv 3 global explanation statements. Seeing the overall chronological
pattern in solutions does not appear to be a ma jor concern for these sub-
jects. perhaps because the logical structure suffices to make lines colere.
This is consistent with Sweller’s work. which has shown that chronolog-
ical patterns embedded in solutions are often overlooked when subjects
are {focussed on obtaining a goal (Sweller & Levine. 1982).

Another hypothesis about explanation embodied in Cascade is that all
inferences are ultimately directed towards the top level goal of explaining
the current solution line. Cascade uses a backwards chaining theorem
prover. which means that it starts with the top level goal. chooses and
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applies a rule. and then focuses on the first of the several subgoals cre-
ated by the rule’s application. When all subgoals have heen achieved, it
executes the ritle. which finallv draws a conclusion. This means that all
inferences are done in order to satisfy some goal. and that goal is ulti-
mately a subgoal of the top level goal. This makes ("ascade a narrowly
focnsed. methodical explainer. It could be that people are more oppor-
tunististic and make observations (i.e.. drawing conclusions) whenever
they notice that they can be drawn. In the extreme. they might do for-
ward chaining. drawing all possible conclusions about a problem while
paving no attention whatsoever to the solution lines or the overall goal
of the probletn. However, only 6 of the 227 explanations appear to he
opportunistic. in that they were not matched by Cascade’s goal-directed
inferences.

How much of Cascade’s problem solving is matched?

We turn now to considering problem solving behaviors. The com-
parison between ('ascade and the subjects is made difficult by two fac-
tors. First, the protocols are huge. There are approximately 2700 pages
of problem solving protocol. as compared to 300 pages of the example
studving protocol. Second. problem solving is less constrained than ex-
ample studving. Rederiving a line in a solution takes at the very most
only a few minutes, whereas solving a problem can take almost an hour.
Subjects seldom get badly lost while rederiving a solution line. whereas
when solving a problem. subjects often wander down several unproduc-
tive paths hefore finding a solution or giving up. Getting Cascade to
follow the subjects on a long doomed search path can be difficult.

Animportant methodological problem is finding a fair wayv to evalunate
the fit of a simulation and a protocol. Suppose one evaluated the fit
by counting the actions taken by the simulation that are matched by
subject actions. and dividing by the total number of actions taken by
the simulation. It often happens that the actions of the simulation and
the subject disagree at some point. This often causes them to diverge
aund follow separate paths for a while, perhaps even a long while. The
longer the divergent paths. the worse the fit, even though the blame
is due to one false move earlier in all cases. Thus. simply comparing
matching to mismatching actions is unilluminating. for it confounds the
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quality of the simulation with properties of the search space. namely. the
lengths of cortain paths.

Our approach is to equip Cascade with a variety of parameters, which
we call “nudges.” whose main purpose is to nudge ('ascade back onto the
subject’s search path whenever it would otherwise wander off. The fit
hetween the simulation and the subject’s protocol is measured by count-
ing the nnmber of times the simulation had to be nudged. An additional
benefit of nudging for measuring fit is that each nudge represents a piece
of unexplained cognition. By taking a census of the nudges. one can
rauk tvpes of unmodeled cognition and discover which ones are affecting
problem solving behavior the most. Here are the tvpes of nudges used:

o When (‘ascade solves a problem. it normally tries transformational
analogy only after it tries regular domain knowledge. However.
some subjects apparently prefer to use transformational analogy in
some cases even when their behavior on earlier cases demonstrates
that theyv have the appropriate domain knowledge and could poten-
tiallv use it here. In order to force ("ascade to follow the subjects.
propositions of the form trafo-only(G) were placed in the prob-
lom’s description whenever G is a goal that the subject preferred to
achieve via transformational analogy. We call sucli cases of trans-
formational analogy “forced.”

o IIv default. the top-level goals of a problem reyuire identifving a
body and drawing a free-body diagram before finding the sought
gquantities. If the subject did not draw a f{ree-body diagram. we
eliminated these goals from the statement of the problem.

e Ou rare occasions. subjects came up with analogical mappings that
(Cascade conld not generate. In such cases. we simplyv gave (‘ascade
the subject’s mapping or modified the problem representations so
that the subject’s mappings could be generated.

o Subjects did not alwavs use the buggy F = ma rule. which lets F he
an individual force instead of the net force. when it was applicable
(i.e.. we could not figure out exactly what preconditions the sub-
jects had for this rule). Perhaps thev rightly believed that it was
overlv general. and thus they would onlv use it as a last resort. At
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any rate, we controlled its usage by entering ignore(F=ma_wrong)
mto the descriptions of some problems but not others.

In order to evaluate (‘ascade’s ability to model a given subject. nudges
were entered by trial and error. Cascade’s behavior then was compared
to the sabgect’s by classifving each of the goals in its trace according to
how the goal was achieved. Four classifications were used:

o ltegnlar solving: (‘ascade used one of the domain rules.

e luipasse with learning: (ascade reached an impasse. successfully
applied EBLC. and learned a new domain rule.

o Transformational analogy: ("ascade could achieve the goal with a
domain rule. so it used transformational analogy.

o Forced transformational analogyv: We forced (‘ascade to use trans-
formational analogyv even though it could have used a domain rule
to achieve the goal.

Next. each of these goals was classified according to how the sub ject
appeared to achieve it. Four classifications were used here as well:

o Transformational analogy. If the subject referred to an example
and copied parts of it over. the goal was classified as achieved by
transformational analogy.

o hupasse with learning. If the subject paused. complained about
the eoal or in some other wayv showed signs of heing stuck. bnt the
sttbject did not refer to an example to achieve the goal. then we
classified the goal as being resolved by EBL('.

e Imipasse and give up. On a few impasses. the subject just gave up
without seemting to resolve the impasse or learn anv new rules. Giv-
ing np is not one of the options available to (‘ascade for handling
an impasse. althongh it should be.

¢ Regular solving: If the subject solved the goal without complain-
ing. referring to an example or pausing for inordinate amounts of
time. then we classified the subject as achieving the goal via regular
problem solving.
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Table 7: How many Cascade goals are achieved the same way by sub-
jeets?

Cascade Subjects
Impasse with! impasse and(

learnin ive Totals
Reguiar soiving 0 0 3700
Transiorm. analogy 0 4 196
Forced irans. analogy o 0 35
Impasse with learning 0 ) 0 18
Totats 258] ) 4 3947

Given these classifications. the results for all nine subjects appear in
Table 7. In most cases (3653 + 176 + 9 = 383% or 97%), the subjects
handled goals in the same way that ('ascade did. which was extremely
unlikelv to occur by chance (p << .001. Chi-squared test). Let us ex-
amine each of the other cells to see how serious the mismatching cases
are.

There were A7 cases where the subjects did transformational analogy
and (‘ascade did not. All these were due to the simplicity of (‘ascade’s
model of transformational analogy. One subject often used vector equa-
tions as il they were scalar equations. and applied them in creative. albeit
incorrect wavs that ('ascade could not model. We let ('ascade solve those
problems in its normal wayv and counted all 42 goals as cases where the
suhject did transformational analogy and Cascade did not. The other 5
cases occurred when a subject could not recall some trigonometry rules.
so she mixed transformational analogy with regular problem soiving in
a complex wayv that (‘ascade could not model. These 47 cases indicate
that (‘ascade’s model of transformational analogy needs improvement.

There were 16 cases where (‘ascade did transformational analogy and
the subject seemed to do regular problem solving. Transformational
analogies oceur when (‘ascade is missing the knowledge to do regular
problem solving. so there are two possible explanations for each case:
Either the subject knew the rules that Cascade lacked. or the subject
actually did have an impasse and resolved it with transformational anal-
ogy. but thev didu't refer overtlv to the example because thev could
remember the line that they needed. and thus were not coded as per-
forming transformational analogy. Of the 16 cases, 8 seemed to be cases
of covert transformational analogy because they involve accessing the
free-body diagram. which is much easier to remember than the equa-
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tions. Two more cases seemed to bhe covert transformational analogy,
hecanse the subject had already referred 1o the example’s equation 3
thmes earlier, and probably had committed it to memory. Five cases
seemed to be caused by the subject having a buggy rule about negative
signs that (‘ascade lacked. hut ('ascade was able to get the same effect
with transformational analogies. The last case is similar to the five just
discussed. but with a different rule. Thus. of the 16 cases. 10 seem to
be covert mpasses correctly predicted by (C'ascade. and 6 seem to re-
sult from the subject having initial knowledge that is not in ('ascade’s
standard initial knowledge base.

In 4 cases. the subjects reached impasses and gave up. Since (‘ascade
currently cannot give up at impasses. these cases were approximated with
transformational analogy. However. Cascade did succeed in predicting
the location of the impasses.

There were 35 cases of forced transformational analogy. Two subjects
(9 of 35 cases) alwavs copied the free-body diagrams and never generated
them on their own. so these subjects apparently were lacking knowledge
abont drawing free-body diagrams. Iu retrospect. these subjects should
have heen modeled by having their initial knowledge adjusted to remove
the rules about drawing free-bodyv diagrams. The other 26 cases occurred
with subjects who clearlv had the requisite rules. but chose to do trans-
formational analogy instead. Of these 26 cases. 21 involved copvying a
free-body diagram rather than reasoning it out from physics principles
and the other 5 involved copyving trigonometry functions rather than fig-
nring out whether the function should be sine. cosine or tangent. and
what the angle should be. It is certainly easier to use transformational
analogy for these particular cases. and apparently the subjects felt it was
siafe to do so.even though transformational analogy is fallible.

There were 7 cases where ("ascade did impasse-driven learning and
the subjects were coded as doing regular problem solving because thev
showed no signs of impasses. In general. there are two possible expla-
nations for such cases. Either the subject actually did impasse-driven
learning but failed to show anv signs of it in their protocol. or they
alveady had the rule that Cascade was missing so theyv just applied it
instead of learning it. We examined each of the 7 cases to try and deter-
mine which explanation was most plausible for each. In some problems
with friction in them, ("ascade must learn four rules about friction forces.
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One subject showed no signs of an impasse at any of these locations. so
we snspect that she already understood friction forces. Another subject
showed signs of an intpasse at three of these places. but not at the fourth:
it is likelv that this fourth occasion was a covert impasse. Similarly. one
problem required learning four rules about pressure forces. A subject
showed signs of an impasse on only two of the four occasions. so it is
likelv that the other two occasions are silent impasses. Thus. of the 7
cases where (‘ascade does impasse-driven learning and the subjects ap-
pear not to. 3 seem to be silent cases of impasse-driven learning and 4
seem to be cases where the subject already knew the rules that Cascade
learned.

From this examination of the mismatching cases, it seems that Cas-
cade would need three augmentations in order to handle all the data. (1)
Transformational analogy needs to be made more powerful so that it can
model the more creative (albeit incorrect) usages exhibited by subjects.
(2) The model should be free to choose transformational analogy instead
ol regular problem solving wlen it estimates that transformational anal-
ogy would he easier or more reliable than regular problem solving. (3)
When Cascade cannot resolve an impasse. it should be allowed to give
up. Al the other cases of mismatching appear to be covert versions
of the predicted events. or cases where rules should have been removed
from the juitial knowledge base.

In short, it appears that almost evervthing that (ascade does is
matched by snbject behavior. The next section analvzes the subjects’
hehavior in order to see how much of it is matched by (‘ascade.

How much of the subjects’ problem solving behavior is
matched?

In order 1o quantify how much of the subject’s thinking during prob-
lem solving conld be simulated by Cascade. we adopted the same unit
ol analvsis that was used in the preceding analvses by converting the
subjects” protocols into Cascade-sized goals. As an illustration of this
analysis. \ppendix | shows a protocol and our encoding of it. Following
the tradition of Newell and Simon (1972), the protocol appears in the
left columin. and the encoding appears in the right column.

This kind of analysis is quite time consuming. so we could not do it
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for all 252 protocols. Thus. we selected 4 protocols that we felt were
typical. Two were from Good solvers. and two were from Poor solvers.
Each of these pairs consisted of one protocol that was mostly transfor-
mational analogy and one that was mostly regular rule-based reasoning.
{ The protocol in Appendix 1 is a Poor solver who is doing mostly trans-
forniational analogy.) Clearly. this is too small a sample to draw strong
inferences. but our point in this section is just to get a rough idea of the
match.

Inferences ocenr whenever a goal is reduced to subgoals. or a goal
is achieved. Thus. by literally reading between the lines. one can tell
from the encoded protocols what the subjects’ inferences were. In the
four protocols. there were 151 inferences. excluding trivial arithmetic and
algebraic ones. We examined each. and determined that (‘ascade could
do all but 15 of them. That is. if we were to simulate these protocols
with Cascade. we would need 15 new rules and would probably have to
mudge it 15 times in order to get it to apply these rules. Thus. it appears
that Cascade can model about 90% of the subject’s inferences during
problem solving.”

In order to give a qualitative sense of the hehavior that (‘ascade could
not siimulate, we divided the inferences into ones that seemed outside
of the intended task domain of ('ascade and those that (‘ascade really
should have modeled. Those that are outside the task domain are:

e In 2 inferences. the subjects checked their work by plugging their
answers hack into eqnations and seeing if the equations balanced.

e In 2 inferences. the subjects struggled to find the appropriate units
for their calculations.

o In 2 inferences, the subject had difficulty understanding the dia-
gram that acconipanied the problem statement. In particular. it
was difficult to decide whether a certain line stood for a string or
not.

The inferenres that were inside the intended domain were:

“Frankly. this estimate seetus high to us. If we actuallv tried to add the regnisite
15 rnles 10 Cascade and simulate these protocols. we would probably find that the
coverage was closer to 60%% or T0%.
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o | inferences were coded for a case where the subject decided he
necded to understand freefall hetter, and went off to read the rele-
vant page of the texthook. then decided that his (incorrect ) solution
to the problem was right anyway.

e 2 inferences were coded for a case where the subject decided to
convert a vertical acceleration to one parallel to an inclined plane.
but apparently did not realize that projection could be applied
directly. so he “converted” it to a force using F = ma. projected
the force. then converted it back.

e 2 inferences involved a subject who let g = —-9.8 for no apparent
reason. This could have been an unintentional error. except that
the subject noticed later that g was negative and did not correct it.
The second inference occurred later, when she dropped a negative
sign “for fun™ as she put it, thus effectively canceling her earlier
error and obtaining a correct answer.

o | inference was coded for a subject who invented something he
called a “double force™ that included both gravitational and fric-
tional influences,

Althonegh these lists would clearly be much longer if more protocols had
been analvzed. and the small sample makes anv statistical inferences
unsound. taking the data at face value indicates that about a third of the
unmatched hehavior is outside the task domain. and the other two thirds
is behavior that ("ascade should model. Moreover. most of the behavior
that Cascade should model is incorrect reasoning of a wide varjety of
tvpes. More research is needed before we can conclude anvthing about
the somrees of these incorreet inferences.

Control choices

The preceding analvses assessed what was done. but ignored the order
in which actions took place. This section concerns the overall contro}
structure as well as the local choices of which rule to try first in achieving
a goal. Both these factors control the order in which inferences take
place.
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("ascade uses a backwards chaining control structure. A goal is pro-
cessed v seleeting a role. then posting anyv subgoals required by that
rule. After the subgoals have been achieved. the rule’s conclusion is as-
serted. Thus. a goal should show up twice in a protocol: when it is
first posted and when it is completed. In our protocols. subjects did not
nsually talk about their goals when they posted them (see Appendix 1).
although thev often mentioned the conclusions that were made when a
goal was achieved. This could be taken as a sign that thev were not
following a backchaining control structure. However. a control structure
also restricts the order in which actions can take place. For instance. if
A and B are subgoals of . and D is not. then the order A.D.B cannot
oceur. Thus, the ordering in which goals are achieved is diagnostic of
the control structure.

As part of the analyvsis in the preceding section. we fit a backwards
chaining goal structure to the subjects’ behavior in the four protocols
analvzed. Of the approximately 151 goals. there were three cases where
hackwards chaining would not fit. In two. the subject performed goals
prematurely (i.e.. the A.D.B case just mentioned). During the third case.
the subject explicitly decided which of two conjunctive (sibling) goals to
do first. This kind of search control occurs in some means-ends analvsis
problem solvers (e.g.. Prodigyv: Minton et al.. 1989) but not in ('asca 'e.
In short. the available evidence indicates that ("ascade’s control structu »
is not a had first approximation to the subjects’ overall approach.

The only search control decision made by (‘ascade is which rule to
apply given that more than one matcles the current goal. Two factors
determine Cascade’s choice of rule. If analogical search control can find
an old goal that is isomorphic to the current goal. then the old goal’s
rule is chosen. If analogical search control does not apply. C'ascade selects
riles in the order in which thev appear in a file. This file is set up to
generate eflicient behavior in general. and is not tuned for anv particular
snbject.

The first analvsis involves placing all goals in one of two classes: Ei-
ther the first role selected for achieving this goal was ultimately rejected
and another rule was used in its place in the final solution. or the first
rule selected was used in the final solution. This categorization was car-
ried out for all ("ascade goals and for all subject goals corresponding to
Cascade goals. Of the 3461 cases where ('ascade picked the correct rule
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first. the subject failed to pick the correct rule first in only 81 (2.3%)
cases. Thus. Caseade predicted the subject’s choice of rule in alimost all
(97.79) cases.

In order to determine how much of this success is due to analogical
search control. we split the 3461 cases according to whether (ascade’s
choice was determined by analogical search control. (ascade selected
the correct rule first without the involvement of analogical search control
2702 times. In 62 of these cases, the subjects did not choose the correct
rule first. Thus (‘ascade’s default rule ordering predicted the subjects’
rle choices 97.7% of the time. ("ascade picked the correct rule first with
its analogical search control mechanism 759 times. and agreeing with the
suhjoct’s choice in all but 19 cases. for a success rate of 97.5%.

Initially. this seemed a disturbing result. because it appeared that
analogical search control gives the model no predictive accuracy over
the defanlt rule ordering. This raises the question of whether Cascade
would be better ofl without analogical search control. If it alwayvs used
its defanlt rule choice. would its overall prediction accuracy rise? Rather
than simulate all 9 sub jects with analogical search control turned off. we
estimated what the fit would be. We gave (‘ascade all the knowledge
necessary to explain and solve the examples and problems (so no im-
passes would be generated) and ran it on all the examples and problems.
While running. it kept track of how many times it used analogical search
control to choose a rule, and how many times that choice corresponded
to the default rule choice. We found that analogical search control led to
a choice different from the default rule approximately 12% of the tine.
This implies that if Cascade had been run with search control turned
off. then about 89 (127 of the 740) cases where analogical search control
predicted the subjects’ rule choice would now become cases where its
predictions fail. In addition. hand analvsis of the 19 cases where analog-
ical search control failed to predict the subject’s choices indicates that
only 2 cases would be successfully predicted if analogical search control
were turned off. Thus. if Cascade had only its default search control. it
would mispredict 106 cases that it successfully predicted with analogical
search control turned on. so its accuracy would drop to 95.6% as opposed
to 97.7%% with analogical search control enabled. Thus. analogical search
control does help.

In order to further understand why analogical search control failed
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to predict 19 rule choices. each was analvzed. All were generated by 2
snhjects, so Cascade’s analogical search control predicted the rule choices
for 7 of the subjects with 100% accuracy. Moreover, it turns out that in
11 of the 19 cases. the first inference made by the subject could not he
modeled by any (‘ascade rule. Such cases indicate an inaccurate model of
the subject’s knowledge. rather than an inaccurate model of the subject’s
search control.

In summary. our initial result appeared to suggest that analogical
search control provided no closer match between ('ascade’s problem solv-
ing behavior and the subjects” than ('ascade’s normal problem solving
did. However. for 7 of the 9 subjects. ('ascade provides a clear improve-
ment in matching the subjects when analogical search control is used.
For the other two subjects. the failure to match appears to arise from
missing prior knowledge rather than a defect in the Jearning mechanism.
Moreover. if analogical search control is turned off. Cascade’s prediction
accuracy would drop.

Discussion of the fit between Cascade and individual sub-
jects

There were two purposes in fitting (‘ascade to the individual sub-
jects. The first was to find out what the subjects were doing. and the
second was to find out how well Cascade could model that. We discuss
these objectives together. first looking at example-studving behavior,
then problem solving behavior.

The two major processes during example-studying were explanation
of a line and acceptance of a line or a part of a line without explaining it.
Cascade’s model of sell-explanation is to rederive the line via ordinary
deduction. Cascade’s backwards chaining control structure ensures that
onlyv inferences relevant 1o the top goal are made. This sufficed to model
6:3% of the subjects’ 227 explantions (see Table 6). (ascade’s model of
accepting a line was simply to prune a whole subtree of an explanation by
accepting a goal as achieved without tryving to achieve it. This sufticed to
account for 929¢ of the subjects” 422 cases of acceptance (see Table 5);
actually, the lack of fit may be due to the goal structure implicit in
(‘ascade’s rules rather than the acceptance mechanism per se. Overall,
(‘ascade accounts for about 75% of the subjects” behavior during example
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stndving.®

The sell-explanations that Cascade does not madel are mostly (73%)
concerned with cognitive skills that we are not interested in modeling.
siuch as algebraic equation solving. That left onlyv 23 explanations that
(‘ascade reallv shiould have modeled. These fell into two groups: iu-
correct explanations (14 cases) and more general comments (9 cases)
including abstract, partial solution plans and observations such as. “The
tension is important because it transmits force hetween the blocks of
an Atwood’s machine.” The first group indicates that Cascade needs
more bugey rules than it currently has. In particular. it needs to model
misconceptions ahout acceleration and motion. The second group indi-
cated that the subjects have an ability that Cascade lacks. Theyv can
stand back from the details and abstract an overall view of either the
solution (i.e.. they see an abstract plan or chronological pattern in the
inferences) or the svstem (i.e.. they form a mental model of the me-
chanical device). Although these are certainly interesting and important
tvpes of cognition. thev appeared surprisingly rarely in this study (only
O of 227 cases. or 4%). When the ('ascade research hegan. we expected
an recognition to be the most important kind of self-explanation. We
have since learned that it occurs rarelv and mayv have little influence
on subsequent problem solving.¥ Overall. it is good news that only 23
(L1°0) of the 166 interesting. task-domain relevant explanations uttered
by subjects require extensions to ('ascade in order to model them. Even
in its present form. ('ascade successfully models the bulk of the subjects’
sell~explanations,

*The coverage figme for example studving was calculated as follows: Table 6 shows
that 635 of the subjects’ self-explanations are modeled by ("ascade. Tahle 5 shows
that 127 of the acceptances are modeled by Cascade. However. these tables use dif-
ferent anit<. From Table 5, we can estimate that about 40% of the subjects” hehavior
was acceptances, so we can use that figure to form a weighted average of the two cov-
erages. and thns calenlate that about 757 of the subjects’ example studving behavior
1= matched by Cascade.

"\lthongh it seems pointless with only 3 cases of abstract planning in the example
stiudying protocols. we could analvze the problem solving protocols to see if these
anbjects” nle choices dnring the relevant sections of their protocol are better explained
by the abstract plans they found during example studying than by the existing search
control mechanisms of ('ascade. Because analogical search control probably makes the
same predictions about rule choices as an abstract plan. we doubt that this analysis
wonld vield nnequivocal results.
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The two most common problem solving processes were backwards
chaining rale-based inference and transformational analogy. We were
surprised by the prevalence of transformational analogy during problem
solving. althougl it was certainly due in part to the fact that 12 of the 21
problems in the studyv were isomorphic {or nearly so) to one of the three
examples (i.e.. there was a set of “string” problems, “incline™ problems.
and “pulley™ problems). Although only around 6% of subjects” problem
solving involved transformational analogy (see Table 7). it often had a
profound aflect on the direction of the subjects” search. ('ascade has a
simple model of transformational analogy. but it was not powerful enough
to handle all the cases. Subjects sometimes find analogical mappings
that Cascade cannot. They sometimes mix transformational and regular
problem solving (47 cases). Thev sometimes prefer to use transforimna-
tional analogy even when theyv do not have to use it (35 cases). Manyv of
these problematic cases occur when subjects need to draw a free-body di-
agramm and refer to the example’s free-body diagram for help. They may
he nsing well-honed skills for visnal analogizing. This would explain why
("ascade’s transformational analogy. which is oriented towards analogical
transfer of equations. is so incomplete.

Ou the whole. it appears that most of the example-studving and
problem-solving behavier can be explained as deduction. simple accep-
tance of example statements, and transformational analogy. Although
these three processes cover only 75% of the example studving behavior
aml 60-90'7 of the problem solving behavior. the behavior they do not
cover mostly involves mathematical manipulations and other tvpes of
cognition that are outside the domain of study.

We were surprised to find that the overall control structure and local
control choices were also modeled rather accurately by ('ascade (see the
preceding section). However, we did not stress this aspect of ("ascade ei-
ther during it development nor during its evalnation. so titere 1s probably
much room for improvement in both areas.

GENERAL DISCUSSION

We have completed three steps of a four-step research program. The
first step was to find a computationallv sufficient account for the knowl-
edee acqnisition that oconred in the Chi et al. study. The major techni-
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cal hurdle was finding a way to constrain search during problem solving
so that impasses wonld occur at the right places. This was achieved
by adding analogical search control. a form of svmbol-level learning.
There was no way to tell in advance of running (‘ascade whether ana-
logical search control was suflicient. Fortunately, it was. and ('ascade
was able to learn all the rules that it needed to learn. Moreover, the
problem of getting impasses to occur in the right places is faced by all
impasse-driven machine learning svstems. so this result is relevant to
many machine learning systems. A minor hurdle was finding a wav to
transfer knowledge from the knot-is-a-body example line to problem solv-
ing. After trving several methods, we discovered a new machine learning
technique, which we called analogical abduction.

The second step in the research program was to demonstrate that
Cascade could explain the main findings of the Chi et al. studv. As a
model of the self-explanation eflect. Cascade was qualitatively adequate.
It conld self-explain example lines as well as just accept them. It could
solve problems with and withont referring to examples. and its analogi-
cal references can both dive into the middle of the example to pick out
a single fact (analogical search control) or read the example {from the
heginning searching for a nseful eqnation (transformational analogy). In
order to go bevond qualitative similarity. simulations were conducted
that modeled an idealized good student and an idealized poor student.
All four of the main findings from the self-explanation study were re-
produced in the contrast hetween the two simulations. A particularly
suprising result was that most of the learning occurred during problem
solving even though the particular learning strategy we manipulated.
self-explanation. operated onlyv during example studving. Examination
of Cascade’s processing showed that the acceleration of its learning dur-
ing problem solving was caused by (1) analogical search control obtain-
e more guidance from the experience (derivation) left behind by self-
explaining the examples. and (2) problem solving having prerequisite
knowledge. obtained during example studving. that allowed it to reach
impasses where learning could appropriatelv take place.

The third step in the research program was to demonstate that (as-
cade can simulate real student cognition at the 5 to 10 second unit of
analvsis. We fit Cascade to subject protocols by forcing it to explain
sxactly the same lines as the subject and to do transformational analogy
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at exactly the same points as the subject. We also gave it initial knowl-
edge that approximated the subject’s knowledge just prior to explaining
the examples. Setting these paraneters, plus occasionally “nudging™ the
svstem. sufliced to fit Cascade to cover most of the subjects’ behavior.
Such fitting was carried out for all 9 sl jects, and the resulting match be-
tween svstem and subject behavior was evaluated. As one might expeci.
given that Cascade was designed to model the subjects. almost every-
thing it did was also done by the subjects. Tables 5 and 7 show that
over 9557 of (Cascade’s goals occured in the subjects’ behavior and were
achieved the same wav by both simulation and subject. On the other
hand. when the subjects” behavior is analvzed in terms of goals and infer-
ences, about 75% of their example-studyving behavior and between 60%
and 9047 of their problem-solving behavior is matched by (‘ascade goals
and inferences. Most of the unmatched hehavior concerns mathematical
manipualations and other skills that (‘ascade was not intended to model.
It was found that the main inadequacy in C'ascade is its simple model of
transformational analogy. Subjects were quite clever at forming useful
analogies with the examples. and especially their {ree-bodyv diagrams.

The fourth step in the research program is to use the fitted models of
individual subjects to find out more about their learning. Unfortunately.
we discovered during the current fitting that some of our assumptions
abont initial knowledge were incorrect. so we will have to rerun the
fitting exercise with new assumptions hefore conducting these analvses.
Nonetheless, a few speculative remarks can be made on the basis of the
existing analvses,

We were surprised that there were so few clear-cut cases of impasse-
driven learning in the protocols. Tables 5 and 7 show that the subjects
had clear signs of impasses on only 1R occassions when Cascade did
EBLC. Althongh analvses to be conducted later will tell us exactly why
there were so few clear cases of learning. it appears that it is due to
overuse of the free-bodyv diagrams. Most of the rules learned by the ide-
alized good student simulation are used during the initial stage of solving
a probleni. when a situation is analvzed and the forces and accelerations
are found. The examples cover this phase by merely presenting the free-
bodyv diagram and perhaps adding a few lines of explanation for any
forces that they consider unobvious. As a consequence. most subjects
simply accepted the free-hody diagrams without trving to explain them.
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and thus missed the opportunity to learn. During problem solving. the
diagrams were again overnsed. This time they subjects tended to use
transformational analogy to adapt an example’s free-body diagram in-
stead of figuring one out from their knowledge of physics. Thus. they
would miss the chance to do hmpasse-driven learning. This problem was
exacerbated by the fact that most of the 25 problems were deliberately
constructed so as to have free-body diagrams that were similar to ones
in the examples. Subjects who used transformational analogy for these
problenis tended to get titewn right. This meant that subjects could learn
very little and vet still get high scores. For instance. one subject who did
not know about normal forces nonetheless got all of the “normal force™
problems right. In short. it appears that overuse of the diagrams. exac-
erbated by the design of the study’s problem set. reduces the number of
cases of impasse-driven learning.

On the other hand. it could also be that subjects had instances of
impasse-driven learning. but thev showed no overt signs of them. Most
of the cases of overt impasse-driven learning came from just two subjects
who were the most vocal of the subjects. It is likelv that the other sub-
jects had episodes of impasse-driven learning but did not report them.
We had hoped to detect these silent impasses by seeing changes in the
subject’s behavior. That is. we had hoped to see one or more occasions
where the to-be-learned rule could be applied but was not. folowed by a
solid string of occasions where the rule was applied. The learning event
wonld be somewlhere in the vicinity of the transition from non-usage to
usage. This tvpe of analvsis succeeded in locating silent learning events
in Tower of Hanoi protocols (VanLehn. 1991a) and finger counting pro-
tocols (Siegler & Jenkins. 1989: Jones & VanLehn. 1991). Unfortunately.
most subjects in this study either alwavs used a rule or alwayvs avoided
it. In some sense. they had to do this. Subjects in the two earlier studies
fearned new alternative strategies to solve a problem that they could
already solve. Thus, if thev did not use one of the to-he-learned rules.
thev alwavs had their old rule to use instead. This was not the case in
the present study. If a rule was missing for a new kind of force. for ex-
ample. theu the subject’s only alternative to learning a new rule was to
use a transformational analogy. Once thev have successfully used trans-
formational analogv for this appearance of the new force, they would
tend to use it for all other appearances. In this fashion, they would miss
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the opportunity to learn new rules. In short. if a subject was to learn a
rule. they tended to dearn it on the first occasion that it was possible to
learn it If they used an alternative to the rule. then thev tended to keep
using that alternative through the end of the study. Thus, we found few
transitions from not using a rule to using a rule. and we have little solid
evidence for silent impasses,

In short. it appears that there is less learning in the protocols than
we had hoped. although this might he partly an artifact of our inability
to detect silent impasses. Nonetheless, there is much to be learned by
examining the instances of learning that did occur. For instance. it would
be good 1o find out if analogical search control really did play a role in
guiding the subjects to an appropriate inpasse.

("ascade is based on the assumption that the self-explanation effect is
due solely to a difference in example-studving habits rather than a dif-
ference in prior knowledge. Surprisingly. this assumption held up even
during the fitting of individual protocols. However. we expect some
challenges to arise during the next set of analvses. It mayv be that the
sithjects” policies about using transformational analogyv are just as im-
portant as self-explanation in determining whether learning will take
place. We suspect that effective learning requires hoth that the subject
explain an example and that theyv try not to refer to it during problem
solving for purposes of obtaining a free-body diagram or an equation.
Ou the other hand. referring to the example for advice on which rule to
choose (analogical search control) should be encouraged. Methodologi-
callv. the complexity of this speculative prescription shows the advantage
ol sinmlation-based analyses of behavior. A prescription based on just
the Chi eto al study would be simpler and perhaps not as effective,

("ascade shows promise as a general model of cognitive skill acqui-
sitton. hut it needs considerable work hevond fixing its model of trans-
formational analogy. In order to be a more complete account of the
phenomena at hand. it needs a model of analogical retrieval and of the
difference hetween physical and mental references to the examples. We
hetieve the existing mechanisims can also handle some well-known phe-
nomena of skill acquisition, such as practice and transfer effects. but
this needs to be demonstrated. The major limitation on the general-
itv of ("ascade 3 is its use of monotonic reasoning. With the help of
Rolf Ploetzner. we are currently incorporating a version of the situation
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cafenfus which will greatly enhance the tvpes of reasoning (‘ascade can
model. and thus the number of task domains that it can model. We
are encouraged to extend (‘ascade to beconie a more complete, more
general model of learning by its similarity to other theories of cognitive
skill acquisition (e.g.. Anderson. 1990: Schank. 1986). It is considerably
simpler than those theories and probably more thoroughly implemented
and tested. We hope that iis simplicity and empirical adequacy remain
intact as it js extended,

Finallv. these results shed some light on the possibility of using ma-
chines to acquire knowledge for expert svstets from ordinary human
instructional material.  Any Al expert would suspect that machines
would have a hard time learning from human materials because they
lack common sense. It turns out that common sense was important for
(‘ascade’s learning. but it was not particularly hard to provide it. Coui-
mon sense was encoded in the non-domain knowledge given to (‘ascade
as part of its initial knowledge base. Most of the non-domain knowl-
edge concerned geometric reasoning, common-sense physical reasoning
about pushes and pulls. and most significantly. overly general rules. This
knowledge was used during EBLC to form new phyvsics-specific domain
knowledge. Hence. common sense knowledge was crucial because it heav-
ilv constrained learning. On the other hand. it was not particularly hard
to figure out what that knowledge should be. Whenever ("ascade would
reach an impasse that it could not resolve with its existing common sense
Kknowledge, it was usnally quite simple to specify that knowledge. After
all. it is common sense.
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APPENDIX

This appendix contains an example of a subject’s protocol encoded
at the level of (Cascade-like subgoals. The protocol appears in the left
column, and the encoding appears in the right. An “(R)” in the left
column indicates that the subject is reading the problem aloud. The
coding procedure consisted of pretending that the subject was a version
of Cascade, and generating the problem-solving trace that this version
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of Cascade wonld have to generate to lead to the utterances found in the
protocol. In order for the subject’s actions to fit into C'ascade’s control
structure, it was sometimes necessary to hypothesize problem-solving
goals that are not verbalized.

The ("ascade model contains four types of goals:

value(X): find a value for the quantity X,
o solve{X=Y): find a solution to the equation X=Y.

¢ retrieve(example): find an example similar to the current problem.

egnation(N): find an equation that can be used to compute a value

for X.

Each goal appears with an *S:™ when the goal is posted and an “F
when a solution to the goal has been found. In addition. the model
sometimes must explicitly “backtrack™ over some subgoals to account
for backtracking behavior by the subject.

The coding process allowed us to fit the hypothetical ('ascade model
as closelv as possible to the subject’s hehavior. In doing this. we were
able to identify specific locations at which the current implementation
of Cascade would fail to generate the subject’s behavior. At these loca-
tions, we would have to manually “nudge™ the system onto the correct
reasoning path. Events of this type are marked with event numbers in
the right-hand margin.

This particular protocol concerns a “poor™ subject solving a combi-
nation pulley-incline problem. The subject initiallv retrieves the pulley
example and copies the equations for tension and acceleration from that
example. For the most part. the subject attempts to directly apply these
equations to the current problem (a strategy that will lead to an incorrect
solution). The subject computes the tension of the string and the accel-
eration of the free-hanging block in this manner. However. tc compute
the acceleration of the block on the incline. the subject assumes his result
for acceleration from the copied equations is actnally the projection of an
acceleration vector that points down the incline. The subject apparently
does not have a rule for computing the projection of an acceleration vec-
tor. so he converts it to a force vector by multiplving the acceleration
by the mass of the block (F = ma). He then computes the projection
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of the force vector and converts the result back to an acceleration with
F = ma again.
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Okay.

(R) A block of mass ml equals 3.0 slugs
on a ssg...smooth

incline plane of angle 30 degrees is
connected by a cord

over a small frictionless pulley to a
second block of mass

m2 equals 2.0 slugs hanging vertically.

(R) What is the acceleration of each
body?

Okay.

That would just...

Ahhh. ..

Okay, the acceleration...

That would be M...with...that would be
like the pulley
again...this equation.
This one.

(mumbles)

Okay.

Ummm. . .

Okay.

Wait.

If...

Find the tension of the whole...

Okay, I want to find the tension of the
whole thing again,

and then I can find the acceleration
for each one, and use
that to find force for
second...well I’1ll use

ehh...for the

it.
Okay, if I use that to find the
component of the force like

for the F...

The Y component for this ml block on
the slant, and find the

whole force, then I’1ll find the whole
acceleration for that.

Okay.

So that would be T equals 2 times M...
Two times mass one is 3.0 times mass
two is 2.0 over mass one

plus two, is 3.0 plus 2.0...time
slugs...

What system is slugs?
Where is that table again?
Here.

Slugs is feet and all.

So that would be. ..

————— e b e —————————————————————————_—————————————————

Hypoth

ought

S
S: wval

S:
F:
S:
S:
F:
S:
F:
F: e

re
re

S: so
S: v
S:

S:

F:
S:

equation(ml),

"

etical Cascade model

s: accel(ml), accel(m2),
tension (cord)
ue (accel (ml)), value(accel (m2))

trieve (example)
trieve (example): px
equation (m2)
quation (ml)
equation(ml) :
equation (m2)
equation (m2) :
quation(ml),
T-mlg=mla,

T-mlg=mla

T-m2g=m2a
equation (m2) :
T-m2g=m2a

lve (accel (ml)=
Fn (proj(accel(ml)))),
solve (accel (m2) =
proj(accel (m2)))
alue(Fn(proj(accel(ml))))),
value (proj(accel (m2)))
value (T) [value (tension(cord))]

(1)

equation(T)
equation(T): ((2mlm2)/(ml+m2))g
solve (T=((2mlm2) / (m1+m2))qg)
: value (ml)

value(ml) : 3.0

value (m2)

value (m2) :2.0

value (g)

value (system(problem))
value (system(slugs))

S:
S:

(2)
(3)

F: value(system(slugs)):
british

value (system(problem)) :
british

F:

e |



Gravity would be 32 feet per second
squared.

Okay, so T equals 2 times 3 is 6.

Time...12 () is 36 times 2 is 12.

12...time 32 equal...divided by 5.

Equals 76.8.

Okay.

And the acceleration...

For ml the accel...

I'1l do m2 first.

Acceleration for m2 is the lighter
one, would be...

Ahh...T minus mlGm2V equals m2A...
76.8 minus 2 times 32

equals 2A.
2A equals 76.8 minus 64 would be 12.8.

A would be... 6.4.

And for...
ml...

T minus mlG equals negative mlA

Will be 76.8 minus 3 times 32 equals

F: value(g): 32

S: solve(T=((2*%3.0%*2.0)/
(3.042.0))*32)
S: value ((2*3%2)/ (3+2))*32)
S: value ((2*%3*2) *32)
S: value (2*3*2)
S: value (2*3)
F: value(2*3): 6
S: value (6*2)
F: value(6*2): 12
F: value(2*3*2): 12
S: value(12*32)

F: value(12*32): 384

F: value ((2*3*2)*32): 384
S: value (384/(34+2))

S: value (3+2)

F: value(3+2): 5

S: value (384/5)

F: value(384/5): 76.8
F: value (384/(3+2)): 76.8

F: value ((2*3*2)/(3+2))*32): 76.8
F: solve (T=((2*3.0*2.0)/
(3.0+42.0))*32): T=76.8

F: solve(T=((2mlm2)/ (mi+m2))g):
T=76.8
F: value(T): 76.8
S: value(Fn(proj(accel (ml))))
Backtrack (4)
S: value (proj(accel (m2)))

S: solve (T-m2g=m2a)
[a=proj(accel (m2))]

: value (T)
: value(T):
: value (m2)
: value(m2): 2
: value(qg)
: value(g): 32
: 80lve(76.8~-2*%32=2*a)
S: value(76.8-2*%32)

S: value(2*32)

F: value(2*32): 64

S: value(76.8-64)

76.8

nunntn

F: value(76.8-64): 12.8
S: value(76.8-2*32): 12.8
S: solve(l2.8=2%*a)

S: solve(a=12.8/2)

S: value(12.8/2)
F: value(12.8/2): 6.4

F: solve(a=12.8/2): a=6.4
F: solve(l2.8=2*a): a=6.4

F: solve(76.8-2*%32=2*a): a=6. 4
F: solve(T-m2g=m2a): a=6.4
F: value(proj(accel(m2))): 6.4

S: value(Fn(proj(accel(ml))))

S: value (proj(accel (ml)))

S: solve(T-mlg=-mla)

[a=proj(accel (ml))]

: value(T)
: value(T) :
: value (ml)
: value(ml): 3
: value(qg)

76.8
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ﬁegatlve 3A.
That’s 76.8 mlnus ()..

76.8 minus 96 equals negatlve 19.2.

Negative 3A equals negative 19.2.

So A equals 6.4 again.

It’s meters per...

No it isn’t.

It’s feet per second squared.

This is feet per second squared.
Okay, but that’s just the vertical
part.

Cause it’s not a slant.

So you can find...

Force equals ma..

And so it would be Fy equals mAy

Fy equals mass is 3 slug times 6.4

equals 19.2 pounds.

Okay, then F would equal Fy over the

sine of 30 degrees.

fif. ..

Equal 19.2 over the sine of 30
degrees equals 19.2 divided by

30 degrees sine equals 38.4 pounds.

Okay, then.
Acceleration...
F equals ma.

38.4 pounds equals...mass is 3 slugs

times A.

A equals 12.8 feet per second squared.

F: value(g): 32

S: solve(76.8-3*%32=-3%a)

S: value(76.8-3*32)
S: value(3*32)

F: value (3*32): 96
S: value(76§.8-96)

F: value(76.8-96): -19.2

F: value(76.8-3*32): -19.2

S: solve(~19.2=-3*a)
S: solve(a=-19.2/-3)
S: value(-19.2/-3)

F: value(-19.2/-3):
F: solve(a=-19.2/-3):
F: solve(~19.2=-3%a):
F: solve(76.8-3*%32=-3%3

6.4
a=6.4
a=6.4
a=6.4

)
F: gsolve(T-mlg=-mla): a=6.
F: value (proj(accel(ml))):

4

6.

S: solve(F=ma) [a=accel(ml)]

S: solve(a=F/m)
S: value(F/m)
S: value (F)
S: solve (F=Fy/sin 30)
S: value (Fy/sin 30)
S: value (Fy)
S: solve (Fy=m*ay)

4

(5

[ay=proj(accel (ml))]

S: value(m*ay)
value (m)
value (m): 3
value (ay)

value (3*6.4)
value (3*6.4) :

'*lmﬂ)m'tlm

F: solve (Fy=m*ay):
F: value(Fy): 19.2

S: value(l19.2/8in 30)

value(ay): 6.4

19.2
F: value(m*ay) 19.2
F=19.2

F: value(19.2/sin 30):
38.4

F: value (Fy/sin 30):
F: solve (F=Fy/sin 30):
F: value(F): 38.4

value (m)
value(m): 3
value (38.4/3)
value(38.4/3): 12.8
F: value(F/m) 12.8
F: solve(a=F/m): a=12.8
F: solve(F=ma): a=12.8
F: value (Fn(proj(accel (ml)
F: value (Fn(proj(accel (ml))

"!U)"lm

)
)

)
)

F=

) :
),

38.4
38.4

12.

)
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